317 research outputs found

    Multi-objective routing and scheduling for airport ground movement

    Get PDF
    Recent research on airport ground movement introduced an Active Routing framework to support multi-objective trajectory-based operations. This results in edges in the airport taxiway graph having multiple costs such as taxi time, fuel consumption and emissions. In such a graph, multiple edges exist between two nodes reflecting different trade-offs among the multiple costs. Aircraft will have to choose the most efficient edge from multiple edges in order to traverse from one node to another respecting various operational constraints. In this paper, we introduce a multi-objective routing and scheduling algorithm based on the enumerative approach that can be used to solve such a multi-objective multi-graph problem. Results using the proposed algorithm for a range of international airports are presented. Compared with other routing and scheduling algorithms, the proposed algorithm can find a representative set of optimal or near optimal solutions in a single run when the sequence of aircraft is fixed. In order to accelerate the search, heuristic functions and a preference-based approach are introduced. We analyse the performance of different approaches and discuss how the structure of the multi-graph affects computational complexity and quality of solutions

    Evolutionary squeaky wheel optimization: a new framework for analysis

    Get PDF
    Squeaky wheel optimization (SWO) is a relatively new metaheuristic that has been shown to be effective for many real-world problems. At each iteration SWO does a complete construction of a solution starting from the empty assignment. Although the construction uses information from previous iterations, the complete rebuilding does mean that SWO is generally effective at diversification but can suffer from a relatively weak intensification. Evolutionary SWO (ESWO) is a recent extension to SWO that is designed to improve the intensification by keeping the good components of solutions and only using SWO to reconstruct other poorer components of the solution. In such algorithms a standard challenge is to understand how the various parameters affect the search process. In order to support the future study of such issues, we propose a formal framework for the analysis of ESWO. The framework is based on Markov chains, and the main novelty arises because ESWO moves through the space of partial assignments. This makes it significantly different from the analyses used in local search (such as simulated annealing) which only move through complete assignments. Generally, the exact details of ESWO will depend on various heuristics; so we focus our approach on a case of ESWO that we call ESWO-II and that has probabilistic as opposed to heuristic selection and construction operators. For ESWO-II, we study a simple problem instance and explicitly compute the stationary distribution probability over the states of the search space. We find interesting properties of the distribution. In particular, we find that the probabilities of states generally, but not always, increase with their fitness. This nonmonotonocity is quite different from the monotonicity expected in algorithms such as simulated annealing

    Environmental Imaginaries of the Middle East and North Africa

    Get PDF
    The landscapes of the Middle East have captured our imaginations throughout history. Images of endless golden dunes, camel caravans, isolated desert oases, and rivers lined with palm trees have often framed written and visual representations of the region. Embedded in these portrayals is the common belief that the environment, in most places, has been deforested and desertified by centuries of misuse. It is precisely such orientalist environmental imaginaries, increasingly undermined by contemporary ecological data, that the eleven authors in this volume question. This is the first volume to critically examine culturally constructed views of the environmental history of the Middle East and suggest that they have often benefitted elites at the expense of the ecologies and the peoples of the region. The contributors expose many of the questionable policies and practices born of these environmental imaginaries and related histories that have been utilized in the region since the colonial period. They further reveal how power, in the form of development programs, notions of nationalism, and hydrological maps, for instance, relates to environmental knowledge production. Contributors: Samer Alatout, Edmund Burke III, Shaul Cohen, Diana K. Davis, Jennifer L. Derr, Leila M. Harris, Alan Mikhail, Timothy Mitchell, Priya Satia, Jeannie Sowers, and George R. Trumbull IVhttps://ohioopen.library.ohio.edu/oupress/1017/thumbnail.jp

    Linear Combinations of Heuristics for Examination Timetabling

    Get PDF
    Although they are simple techniques from the early days of timetabling research, graph colouring heuristics are still attracting significant research interest in the timetabling research community. These heuristics involve simple ordering strategies to first select and colour those vertices that are most likely to cause trouble if deferred until later. Most of this work used a single heuristic to measure the difficulty of a vertex. Relatively less attention has been paid to select an appropriate colour for the selected vertex. Some recent work has demonstrated the superiority of combining a number of different heuristics for vertex and colour selection. In this paper, we explore this direction and introduce a new strategy of using linear combinations of heuristics for weighted graphs which model the timetabling problems under consideration. The weights of the heuristic combinations define specific roles that each simple heuristic contributes to the process of ordering vertices. We include specific explanations for the design of our strategy and present the experimental results on a set of benchmark real world examination timetabling problem instances. New best results for several instances have been obtained using this method when compared with other constructive methods applied to this benchmark dataset

    A modified choice function hyper-heuristic controlling unary and binary operators

    Get PDF
    Hyper-heuristics are a class of high-level search methodologies which operate on a search space of low-level heuristics or components, rather than on solutions directly. Traditional iterative selection hyper-heuristics rely on two key components, a heuristic selection method and a move acceptance criterion. Choice Function heuristic selection scores heuristics based on a combination of three measures, selecting the heuristic with the highest score. Modified Choice Function heuristic selection is a variant of the Choice Function which emphasises intensification over diversification within the heuristic search process. Previous work has shown that improved results are possible in some problem domains when using Modified Choice Function heuristic selection over the classic Choice Function, however in most of these cases crossover low-level heuristics (operators) are omitted. In this paper, we introduce crossover low-level heuristics into a Modified Choice Function selection hyper-heuristic and present results over six problem domains. It is observed that although on average there is an increase in performance when using crossover low-level heuristics, the benefit of using crossover can vary on a per-domain or per-instance basis

    A comparison of crossover control mechanisms within single-point selection hyper-heuristics using HyFlex

    Get PDF
    Hyper-heuristics are search methodologies which operate at a higher level of abstraction than traditional search and optimisation techniques. Rather than operating on a search space of solutions directly, a hyper-heuristic searches a space of low-level heuristics or heuristic components. An iterative selection hyper-heuristic operates on a single solution, selecting and applying a low-level heuristic at each step before deciding whether to accept the resulting solution. Crossover low-level heuristics are often included in modern selection hyper-heuristic frameworks, however as they require multiple solutions to operate, a strategy is required to manage potential solutions to use as input. In this paper we investigate the use of crossover control schemes within two existing selection hyper-heuristics and observe the difference in performance when the method for managing potential solutions for crossover is modified. Firstly, we use the crossover control scheme of AdapHH, the winner of an international competition in heuristic search, in a Modified Choice Function - All Moves selection hyper-heuristic. Secondly, we replace the crossover control scheme within AdapHH with another method taken from the literature. We observe that the performance of selection hyper-heuristics using crossover low level heuristics is not independent of the choice of strategy for managing input solutions to these operators

    A genetic programming hyper-heuristic approach for evolving 2-D strip packing heuristics

    Get PDF
    We present a genetic programming (GP) system to evolve reusable heuristics for the 2-D strip packing problem. The evolved heuristics are constructive, and decide both which piece to pack next and where to place that piece, given the current partial solution. This paper contributes to a growing research area that represents a paradigm shift in search methodologies. Instead of using evolutionary computation to search a space of solutions, we employ it to search a space of heuristics for the problem. A key motivation is to investigate methods to automate the heuristic design process. It has been stated in the literature that humans are very good at identifying good building blocks for solution methods. However, the task of intelligently searching through all of the potential combinations of these components is better suited to a computer. With such tools at their disposal, heuristic designers are then free to commit more of their time to the creative process of determining good components, while the computer takes on some of the design process by intelligently combining these components. This paper shows that a GP hyper-heuristic can be employed to automatically generate human competitive heuristics in a very-well studied problem domain

    A greedy gradient-simulated annealing hyper-heuristic for a curriculum-based course timetabling problem

    Get PDF
    Copyright © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.12th UK Workshop on Computational Intelligence (UKCI), Edinburgh, Scotland, 5-7 September 2012The course timetabling problem is a well known constraint optimization problem which has been of interest to researchers as well as practitioners. Due to the NP-hard nature of the problem, the traditional exact approaches might fail to find a solution even for a given instance. Hyper-heuristics which search the space of heuristics for high quality solutions are alternative methods that have been increasingly used in solving such problems. In this study, a curriculum based course timetabling problem at Yeditepe University is described. An improvement oriented heuristic selection strategy combined with a simulated annealing move acceptance as a hyper-heuristic utilizing a set of low level constraint oriented neighbourhood heuristics is investigated for solving this problem. The proposed hyper-heuristic was initially developed to handle a variety of problems in a particular domain with different properties considering the nature of the low level heuristics. On the other hand, a goal of hyper-heuristic development is to build methods which are general. Hence, the proposed hyper-heuristic is applied to six other problem domains and its performance is compared to different state-of-the-art hyper-heuristics to test its level of generality. The empirical results show that the proposed method is sufficiently general and powerful
    • …
    corecore